原文:https://blog.csdn.net/lanchunhui/article/details/50521648



from sklearn.pipeline import Pipeline



管道机制在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。
管道机制实现了对全部步骤的流式化封装和管理(streaming workflows with pipelines)。
注意:管道机制更像是编程技巧的创新,而非算法的创新。

接下来我们以一个具体的例子来演示sklearn库中强大的Pipeline用法:
1. 加载数据集
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelEncoder

df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/'
                 'breast-cancer-wisconsin/wdbc.data', header=None)
                                 # Breast Cancer Wisconsin dataset

X, y = df.values[:, 2:], df.values[:, 1]
                                # y为字符型标签
                                # 使用LabelEncoder类将其转换为0开始的数值型
encoder = LabelEncoder()
y = encoder.fit_transform(y)
                    >>> encoder.transform(['M', 'B'])
                    array([1, 0])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=0)


2. 构思算法的流程
可放在Pipeline中的步骤可能有:
特征标准化是需要的,可作为第一个环节
既然是分类器,classifier也是少不了的,自然是最后一个环节
中间可加上比如数据降维(PCA)
。。。
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import Pipeline

pipe_lr = Pipeline([('sc', StandardScaler()),
                    ('pca', PCA(n_components=2)),
                    ('clf', LogisticRegression(random_state=1))
                    ])
pipe_lr.fit(X_train, y_train)
print('Test accuracy: %.3f' % pipe_lr.score(X_test, y_test))

# Test accuracy: 0.947


Pipeline对象接受二元tuple构成的list,每一个二元 tuple 中的第一个元素为 arbitrary identifier string,我们用以获取(access)Pipeline object 中的 individual elements,二元 tuple 中的第二个元素是 scikit-learn与之相适配的transformer 或者 estimator。
Pipeline([('sc', StandardScaler()), ('pca', PCA(n_components=2)), ('clf', LogisticRegression(random_state=1))])



3. Pipeline执行流程的分析
Pipeline 的中间过程由scikit-learn相适配的转换器(transformer)构成,最后一步是一个estimator。比如上述的代码,StandardScaler和PCA transformer 构成intermediate steps,LogisticRegression 作为最终的estimator。

当我们执行 pipe_lr.fit(X_train, y_train)时,首先由StandardScaler在训练集上执行 fit和transform方法,transformed后的数据又被传递给Pipeline对象的下一步,也即PCA()。和StandardScaler一样,PCA也是执行fit和transform方法,最终将转换后的数据传递给 LosigsticRegression。整个流程如下图所示:
pipeline.jpg
4. pipeline 与深度神经网络的multi-layers
只不过步骤(step)的概念换成了层(layer)的概念,甚至the last step 和 输出层的含义都是一样的。
只是抛出一个问题,是不是有那么一丢丢的相似性?


--------------------- 
作者:Inside_Zhang 
来源:CSDN 
原文:https://blog.csdn.net/lanchunhui/article/details/50521648 
版权声明:本文为博主原创文章,转载请附上博文链接!